A Unified Approach in Speech-to-Speech Translation: Integrating Features of Speech recognition and Machine Translation

نویسندگان

  • Ruiqiang Zhang
  • Gen-ichiro Kikui
  • Hirofumi Yamamoto
  • Frank K. Soong
  • Taro Watanabe
  • Wai Kit Lo
چکیده

Based upon a statistically trained speech translation system, in this study, we try to combine distinctive features derived from the two modules: speech recognition and statistical machine translation, in a loglinear model. The translation hypotheses are then rescored and translation performance is improved. The standard translation evaluation metrics, including BLEU, NIST, multiple reference word error rate and its position independent counterpart, were optimized to solve the weights of the features in the log-linear model. The experimental results have shown significant improvement over the baseline IBM model 4 in all automatic translation evaluation metrics. The largest was for BLEU, by 7.9% absolute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

The Effect of Private Speech and Self-Regulation on Translation Quality among Iranian Translation Students: A Mixed-Methods Study

The current study presents findings from a mixed-methods study of investigating the self-regulatory role of private speech (self-talk) on students’ translation quality. The aim of the study was to validate the adapted version of a self-verbalization questionnaire. The construct validity and reliability of the scale were supported by the CFA which revealed that all items reached the acceptable f...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Using multiple recognition hypotheses to improve speech translation

This paper describes our recent work on integrating speech recognition and machine translation for improving speech translation performance. Two approaches are applied and their performance are evaluated in the workshop of IWSLT 2005. The first is direct N-best hypothesis translation, and the second, a pseudo-lattice decoding algorithm for translating word lattice, can dramatically reduce compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004